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Abstract. Quantum scattering calculations are reported for the H + HCl(v, j = 0) and H + DCl(v, j =
0) collisions for vibrational levels v = 0−2 of the diatoms. Calculations were performed for incident
kinetic energies in the range 10−7−10−1 eV, for total angular momentum J = 0 and s-wave scattering in
the entrance channel of the collisions. Cross-sections and rate coefficients are characterized by resonance
structures due to quasibound states associated with the formation of the H· · ·HCl and H· · ·DCl van
der Waals complexes in the incident channel. For the H + HCl(v, j = 0) collision for v = 1, 2, reactive
scattering leading to H2 formation is found to dominate over non-reactive vibrational quenching in the
ultracold regime. Vibrational excitation of HCl from v = 0 to v = 2 increases the zero-temperature limiting
rate coefficient by about 8 orders of magnitude.

PACS. 34.50.-s Scattering of atoms and molecules – 34.50.Ez Rotational and vibrational energy transfer
– 34.50.Pi State-to-state scattering analyses

1 Introduction

Over the last several years, much progress has been made
in cooling, trapping, and manipulating molecules at ultra-
cold temperatures [1–6] and Bose-Einstein condensation
(BEC) of diatomic molecules has recently been demon-
strated [3–5]. The experimental breakthrough that led to
the creation of molecular Bose-Einstein condensates start-
ing from fermionic atoms provides unique opportunities
to study the crossover regime between Bardeen-Cooper-
Schrieffer-type superfluidity of momentum pairs and BEC
of molecules [7–10], a topic that has been of long interest
to the high temperature superconductivity community.

Collisional studies of ultracold molecules have re-
ceived considerable attention in recent years [11–17] and
the possibility of quantum collective effects in chemi-
cal reactions involving ultracold molecules is of particu-
lar interest [18,19]. Polar molecules are another class of
molecules that have received important attention in re-
cent experiments. The anisotropic, long-range character of
the electric dipole-dipole interactions of polar molecules
also designates them as potential candidates for scal-
able quantum computation schemes using electric dipole
moment couplings [20–23]. The techniques developed so
far for creating ultracold molecules fall into three dif-
ferent categories, namely buffer-gas cooling of param-
agnetic molecules [1,24–26], electrostatic cooling of po-
lar molecules [27–30] and photoassociation of ultracold
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atoms [31–35]. While the first two approaches have been
successful in trapping polar molecules at cold temper-
atures of 10−100 mK, the creation of ultracold (T �
100 µK) polar neutral ground state molecules (KRb) was
achieved only recently by photoassociation in a magneto-
optical trap [36]. Formation of electronically excited RbCs
molecules by photoassociation in a laser-cooled mixture of
85Rb and 133Cs atoms [37,38] has also been reported.

Photoassociation creates molecules in highly excited
vibrational levels and their lifetime is restricted by col-
lisions leading to vibrational relaxation and/or chemical
reactivity [39,40]. The effect of vibrational excitation on
quenching rate coefficients in the ultracold regime has
been explored before but similar studies on chemical re-
activity have not been reported. In this work, we report
quantum scattering calculations of atom-diatom reactions
at cold and ultracold temperatures in which the diatom
is taken to be a highly polar molecule. Previous stud-
ies of ultracold chemical reactions investigated nonpolar
molecules like H2 [39], its isotopic counterparts [40,41] or
alkali metal dimers [16]. Here, we investigate the bimolec-
ular H+HCl and H+DCl collisions at low and ultralow en-
ergies for which the reaction proceeds mainly by quantum
tunneling of the exchanged atom through a barrier along
the reaction path. As elementary steps in the H2 +Cl2 re-
action system, which plays a major role in chemical kinet-
ics and in atmospheric chemistry, the gas-phase H + HCl
and Cl + H2 reactions and their isotopic variants have re-
ceived important attention both theoretically [42–52] and
experimentally [44,53–57]. However, these kinetics studies
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and experiments have been carried out in the temperature
range 195 K ≤ T ≤ 3020 K and no scattering calculations
have been reported so far for these reactions in the cold
and ultracold regimes, to our knowledge.

In this paper, we present results for state-to-state
and initial-state-selected probabilities and cross-sections
for both reactive and non-reactive channels of the H +
HCl(v, j = 0) and H + DCl(v, j = 0) collisions for vibra-
tional levels v = 0−2 in the ground electronic state. The
presence of pronounced resonance structures due to quasi-
bound states associated with van der Waals complexes in
the initial channel is discussed. Finally, reaction rate coef-
ficients for H2 and HD formations are also presented as a
function of the temperature and in the zero-temperature
limit. We show that vibrational excitation of HCl and DCl
dramatically increases the rate coefficients in the ultracold
regime.

2 Calculations

The quantum mechanical coupled-channel hyperspheri-
cal coordinate method of Skouteris et al. [58] is used
to solve the Schrödinger equation for the motion of the
three nuclei on the parametric representation of the single
Born-Oppenheimer potential energy surface (PES) devel-
oped by Bian and Werner (BW) [59]. The small effect of
the fine-structure observed in similar reactions [52,60,61]
supports our choice to neglect the spin-orbit splitting in
the Cl(2P) atom. Although the accuracy of this potential
energy surface for ultracold collision studies is question-
able, based on our experience we believe that major find-
ings of our study will not be affected if a more accurate
ClH2 potential surface is used.

Scattering calculations were performed for a total
molecular angular momentum J = 0 and s-wave scat-
tering in the incident channel of the H + HCl(v, j = 0)
and H + DCl(v, j = 0) collisions for vibrational states
v = 0−2. We note that in the case of weak trapping
potentials, which are expected to allow long decoherence
times in 1D trap arrays of quantum computers [23], only
s-wave scattering is expected to play a significant role [62].
Because at very low kinetic and internal energies these
reactions proceed mainly by quantum tunneling, the re-
sulting reaction probabilities are very small and partic-
ular attention must be paid to convergence. Extensive
convergence tests of the initial-state-selected and state-
to-state reaction probabilities have been carried out, with
respect to the number of rovibrational levels included in
the basis set, jmax, the maximum value of the hyperra-
dius, ρmax, and the step size for the log derivative prop-
agation, ∆ρ. Figure 1 shows the total reaction probabil-
ity for H2 formation in H + HCl(v = 0; j = 0) collisions
as a function of the incident kinetic energy for different
values of ρmax and ∆ρ. Convergence of the total reac-
tion probability with an accuracy of the order of 10−10

was obtained with ρmax = 25.0 a.u. and ∆ρ = 0.005 a.u.
for kinetic energies in the range 10−5−10−3 eV. Using
these values of ρmax and ∆ρ, a more stringent conver-
gence test consisted in the analysis of the product rota-
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Fig. 1. Reaction probability for H2 formation in H+HCl(v =
0, j = 0) collisions as a function of the incident kinetic energy
for different values of ρmax and ∆ρ.
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Fig. 2. State-to-state reaction probability for H2(v
′ = 0, j′)

formation as a function of j′ in H+HCl(v = 1, j = 0) collisions,
for different values of Emax and jmax, at an incident kinetic
energy of 10−3 eV, ρmax = 25.0 a.u., and ∆ρ = 0.005 a.u.

tional (j′) distribution. For an incident kinetic energy of
10−3 eV, convergence of the state-to-state probability for
H+ HCl(v = 0, 1; j = 0) and H+ DCl(v = 0, 1; j = 0) was
achieved to within 10−10 using jmax = 15 and a cutoff in-
ternal energy Emax = 2.9 eV in any channel. The resulting
basis sets for HCl and DCl collisions consisted of 376 and
456 basis functions, respectively. Figure 2 illustrates the
convergence of the state-to-state reaction probability with
respect to jmax and Emax for H2(v′ = 0, j′) formation in
H + HCl(v = 1, j = 0) collisions, for an incident kinetic
energy of 10−3 eV, ρmax = 25.0 a.u., and ∆ρ = 0.005 a.u.
Convergence of the state-to-state probabilities for the
H + HCl(v = 2; j = 0) and H + DCl(v = 2; j = 0) col-
lisions was achieved using larger basis sets of 721 and 891
basis functions, respectively, corresponding to jmax = 25
and Emax = 3.5 eV. On the basis of these convergence
tests, values of jmax = 15 and Emax = 2.9 eV for v = 0, 1
and of jmax = 25 and Emax = 3.5 eV for v = 2 were
adopted for the calculations reported hereafter.
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3 Results and discussion

The cross-sections for H2 and HCl formation and for non-
reactive scattering in H + HCl(v, j = 0) collisions are
shown in Figure 3, for v = 0−2, for incident kinetic
energy in the range 10−7−10−1 eV. For HCl molecules
initially in their ground vibrational state, the reaction
proceeds mainly by quantum tunneling through the bar-
rier, yielding small values for the cross-sections. We note
that for the v = 0, j = 0 initial state nonreactive chan-
nels are open only for incident kinetic energy larger than
2.585 × 10−3 eV, corresponding to the energy value for
rotational excitation to the first excited level j = 1
of the ground vibrational state. The sharp rise in the
cross-section for nonreactive scattering at energies above
2.585×10−3 eV is due to rotational excitation to the j = 1
level. In the zero-temperature limit, the cross-section for
the abstraction reaction leading to H2 formation is about
9 orders of magnitude larger than the exchange mechanism
leading to HCl formation, consistent with the fact that
the transmission coefficient for tunneling of the H atom
through a finite potential barrier is larger than for heavier
atoms like chlorine [63]. As v increases and the barrier
height decreases, the H2/HCl product branching ratio de-
creases, with values differing by 3 orders of magnitude for
v = 1, and 2 orders of magnitude for v = 2 at an incident
kinetic energy of 10−7 eV. For energies below 10−4 eV,
cross-sections reach the Wigner regime [64] where they
vary inversely as the velocity and their ratios become con-
stant. For the v = 0, j = 0 case, the hydrogen exchange
process is indistinguishable from elastic scattering and
the cross-section attains a constant value in the Wigner
limit as expected for elastic scattering. For kinetic ener-
gies larger than 10−3 eV, pronounced resonance structures
appear in the cross-sections due to quasibound states as-
sociated with the formation of the H· · ·HCl van der Waals
complex in the initial channel, as reported previously for
different molecular systems [65–68]. Figure 4 shows cross-
sections for HD and HCl formation as well as nonreactive
scattering in H + DCl(v, j = 0) collisions as functions of
the incident kinetic energy. Cross-sections are presented
only for the first two vibrationally excited states v = 1
and 2 due to the negligible values obtained for the v = 0
level of DCl. While nonreactive cross-sections have simi-
lar magnitude as for H + HCl(v, j = 0) collisions, reactive
cross-sections are several orders of magnitude smaller for
the deuterated reaction, the difference being attributed to
the less efficient tunneling of the heavier D atom.

State-to-state reaction probabilities as a function of
the product rotational quantum number j′ are repre-
sented in Figure 5 for the ground vibrational state of
the H2 and HD fragments in H + HCl(v = 1, j = 0) and
H + DCl(v = 1, j = 0) collisions, respectively. For a fixed
incident kinetic energy of 10−5 eV, 7 rotational levels are
energetically accessible in the diatomic products of both
reactions. High-j channels of H2 are preferentially popu-
lated even though lower-lying rotational states are open.
The probability for H2 formation in its ground vibrational
state peaks at j′ = 4, corresponding to an exoergicity of
0.2379 eV = 5.487 kcal/mol for the abstraction reaction.
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Fig. 3. Cross-sections for H2 and HCl formation and nonreac-
tive scattering in H + HCl(v, j = 0) collisions, for v = 0−2, as
a function of the incident kinetic energy. Dotted curve: nonre-
active scattering; dashed curve: reactive HCl product channel;
solid curve: H2 product channel.
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Fig. 4. Cross-sections for HD and HCl formation and nonre-
active scattering in H+DCl(v, j = 0) collisions, for v = 1, 2, as
a function of the incident kinetic energy. Dotted curve: nonre-
active scattering; dashed curve: reactive HCl product channel;
solid curve: HD product channel.

In the case of HD(v′ = 0) formation, the maximum energy
released by this reaction is 0.2354 eV = 5.429 kcal/mol,
for j′ = 2, with a significantly reduced probability than
for the H2 case.

Figure 6 displays the reaction rate coefficients defined
as the product of the cross-section and the relative velocity
for H2 and HD formation for the H + HCl(v, j = 0) and
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Fig. 5. Comparison of the state-to-state reaction probabilities
for H2(v

′ = 0, j′) (solid curve) and HD(v′ = 0, j′) (dot-dashed
curve) formation in H + HCl(v = 1, j = 0) and H + DCl(v =
1, j = 0) collisions, respectively. The probability is represented
as a function of the product rotational number j′ for a fixed
incident kinetic energy of 10−5 eV.

H + DCl(v, j = 0) reactions, respectively, for v = 0−2,
as a function of the temperature. The Wigner regime, for
which the rate coefficients become constant, is attained
for temperatures below 1 K for H2 formation, and below
10−3 K for the HD product. For v = 1 and 2, the rate
coefficients for H2 production is an order of magnitude
larger than for HD at cold and ultracold temperatures.
However, for v = 1 the rate coefficient for HD formation
becomes slightly larger than for H2 in the tunneling region
of the H+ DCl reaction, i.e. around T = 5 K. In the zero-
temperature limit, the rate coefficients calculated for H2

and HD formation, respectively, are 1.9 × 10−11 cm3 s−1

and 1.7×10−12 cm3 s−1 for v = 2, 7.2×10−14 cm3 s−1 and
7.8×10−15 cm3 s−1 for v = 1, and 2.4×10−19 cm3 s−1 for
H2 with v = 0.

4 Conclusion

State-to-state and initial-state-selected cross-sections have
been calculated using fully quantum mechanical tech-
niques for both reactive and non-reactive channels of the
H + HCl(v, j = 0) and H + DCl(v, j = 0) collisions, for
v = 0−2. Resonance structures due to quasibound states
of the H· · ·HCl and H· · ·DCl van der Waals wells in the
entrance valley appear in energy dependence of the cross-
sections. Our results also indicate that H2 formation is
the predominant process of H+HCl collisions at cold and
ultracold temperatures, while for H + DCl non-reactive
scattering is more favorable in this regime. We find that,
for both H+HCl and H+DCl collisions, vibrational exci-
tation dramatically enhances the zero-temperature limit-
ing value of the rate coefficients. The effect of vibrational
excitation is found to be comparable for reactive and non-
reactive channels in the ultracold limit.
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Fig. 6. Reaction rate coefficients for H2 and HD formation
for the H + HCl(v, j = 0) (solid curve) and H + DCl(v, j = 0)
(dot-dashed curve) reactions, for v = 0−2, as a function of the
temperature.
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